Creating A Cleaner Energy Future For the Commonwealth

Massachusetts Department of Energy Resources

Heat Pumps in the Massachusetts Alternative Portfolio Standard

American Energy Engineers Technical Roundtable November 17, 2014, Westborough, MA

Heat Pumps & Renewable Thermal

- Heat pumps are among a portfolio of renewable thermal technologies offering opportunities
 - Energy bill savings, greenhouse gas reductions, air quality improvement, local job creation
 - Includes single family, multi-family as well as commercial building applications
 - > Best when offsetting fuel oil, electric heat
 - Natural gas depends on cooling option

Existing Residential Incentives

Heat Pump	Air Source	Ground Source	Water Heater
Mass Save [®] rebate	Up to \$500		\$750
Mass Save HEAT Loan	0% interest loan up to \$25,000		
Residential Renewable Energy Tax Credit		30%	
Renewable Energy Equipment Sales Tax Exemption		100%	

MA Alternative Portfolio Standard

- <u>Alternative</u> Portfolio Standard established by the 2008 Green Communities Act, in addition to <u>Renewable</u> Portfolio Standard
 - Retail electric suppliers have annual obligation to meet increasing share of load with generation from eligible alternative energy sources
 - List of eligible technologies
 - In practice only Combined Heat and Power
 - Undersupply of Alternative Energy Credits lead to high reliance on Alternative Compliance Payments
 - Current ACP rate is \$21/MWh

Technology changes – per the Statute (Acts 2014, Chapter 251)

- <u>Add</u> any facility that generates useful thermal energy using:
 - Sunlight, biomass, biogas, liquid biofuel or naturally occurring temperature differences in ground, air or water
- <u>Strike</u> carbon capture and storage, gasification, paper derived fuel
- Additionally <u>exclude</u> construction & demolition debris

Creating A Cleaner Energy Future For the Commonwealth

DOER Regulatory Process

- Stakeholder/industry engagement
 Meeting preceding formal regulatory process
 Formal public hearing and comment period
 Subgroups on metering, biofuels and biomass
- Regulatory proceeding: 225 CMR 16.00
 Draft regulations before end 2014
 Final regulations by summer 2015?
- Use guidelines according to RPS/APS custom

Eligible Technologies

- Active solar heating
 - > Space heating, domestic & process hot water
- Automatically fed biomass boilers and furnaces > Wood pellets, chips
- Blended or pure biogas and biofuels
- Heat pumps
 - > Air source, ground source, water source Not: fossil pre-heating heat pumps

Net Energy Generation

 $E_{net} = E_{thermal, out} - E_{non-renewable, in}$

- Energy calculated as primary energy
 - Taking into account average heat rate and transmission/distribution losses for electricity (ISO-NE)
- 1 Alternative Energy Credit (AEC)
 - = 1 MWh = 3.412 MMBtu

Example Residential Installation

Building characteristics

Heat Load	MMBtu/y	100	Illustrative example –
Cool Load	MMBtu/y	40	actual calculation will depend on final
Domestic Hot Water Load	MMBtu/y	15	regulations

		ccASHP	GSHP	
Efficiency/COP		3	4	
Load served (heating & cooling)	%	80%	100%	
Thermal energy	MMBtu/y	112	140	
Net useful thermal energy	MMBtu/y	20	54	

Electric Conversion Rate used for net energy calculation = 41%

Creating A Cleaner Energy Future For the Commonwealth

Metering Approach

- Large systems: continuous accurate metering and automatic reporting
- Small systems: calculate projected output
 - Cut-off large/small = 400 kBtu/h (total system capacity)
 - Meant to cover residential, small multi-family and small commercial
 - Based on assessment of cost of metering compared to AEC revenue
 - Verification of ongoing operation through spot checks and run-time monitoring

Large System Metering

- Air/Ground Source Heat Pumps: quantify the consumption of the site grid electricity and the supply of renewable heat energy terms by combining
 - > Directly metered values (ΔT , runtime)
 - ΔT across loop (ground wells, working fluid)
 - Nominally rated system performance
 - Original equipment manufacturer certified: AHRI
 - Need standardized performance data at different temperatures (incl. 5°F)

Upfront Minting of AECs

- Upfront minting will be default for non-metered (small) systems
 - In lieu of lifetime AECs, systems will receive a onetime strip of AECs, equivalent to 10 years projected output
 - AECs will be year of APS qualification vintage
 - Upfront minting allowed as far as APS minimum standard can accommodate
 - DOER contracts with Third Party (Agent)
 - Default AEC aggregator
 - System verification
 - DOER is considering market options to enable purchase of pre-minted AECs to provide up-front project capital

Example Residential Installation

Building characteristics

Heat Load	MMBtu/y	100	Illustrative example –
Cool Load	MMBtu/y	40	actual calculation will depend on final
Domestic Hot Water Load	MMBtu/y	15	regulations

		ccASHP	GSHP
Efficiency/COP		3	4
Load served (Heating & Cooling)	%	80%	100%
AEC/year		6	16
Pre-minted AEC value	\$	\$886	\$2,370

Calculation assumes 10 years pre-minted AECs are sold at \$15/AEC

Creating A Cleaner Energy Future For the Commonwealth

Inclusion in APS impacts LCOE

Source: Useful thermal in the APS, Report to the Legislature, EEA/DOER, December 2012

Massachusetts Department of Energy Resources

Creating A Cleaner Energy Future For the Commonwealth

16

Stakeholder Comments

- Stakeholders invited to provide written feedback
 - Comments, suggestions, information resources
 - E-mail before 11/26/2014 to bram.claeys@state.ma.us

Thank you!

Massachusetts Department of Energy Resources

Creating A Cleaner Energy Future For the Commonwealth

18